Ghent University-iMinds at MediaEval 2014 Diverse Images: Adaptive Clustering with Deep Features

نویسندگان

  • Baptist Vandersmissen
  • Abhineshwar Tomar
  • Fréderic Godin
  • Wesley De Neve
  • Rik Van de Walle
چکیده

In this paper, we attempt to tackle the MediaEval 2014 Retrieving Diverse Social Images challenge, a filter and refinement problem defined for a Flickr-based ranked set of social images. We build upon solutions proposed in [5] and mainly focus on exploiting the joint use of all modalities. The use of image features extracted from a deep convolutional neural network, combined with the use of distributed word representations, forms the basis of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ghent University-iMinds at MediaEval 2013 Diverse Images: Relevance-Based Hierarchical Clustering

In this paper, we attempt to tackle the MediaEval 2013 Retrieving Diverse Social Images challenge, which is a filter and refinement problem on a Flickr-based ranked set of social images. We developed three different approaches, using visual data, textual data and a combination thereof, respectively. Hierarchical clustering on highly relevant images, combined with a greedy approach to complement...

متن کامل

Retrieval of Diverse Images by Pre-filtering and Hierarchical Clustering

In this paper, we describe our approach and its results for MediaEval 2014 Retrieving Diverse Social Images Task. The basic idea of our proposed method is to filter out non-relevant images at the beginning of the process and then construct a hierarchical tree which allows to cluster the images with different criteria on visual and textual features. Experimental results shown that it is stable a...

متن کامل

Ghent University-iMinds at MediaEval 2013: An Unsupervised Named Entity-based Similarity Measure for Search and Hyperlinking

In this paper, we describe our approach to the Search and Hyperlinking task at the MediaEval 2013 benchmark. This task focuses on video retrieval and linking in the context of a large and rich dataset provided by the BBC. Our approach makes use of one of three types of audio transcripts, enriched with Named Entities. To compute similarity, we adapt the Jaccard metric to use Named Entities. This...

متن کامل

UMONS @ MediaEval 2017: Diverse Social Images Retrieval

This paper presents the results achieved during our participation at the MediaEval 2017 Retrieving Diverse Social Images Task. The proposed unsupervised multimodal approach exploits visual and textual information in a fashion that prioritizes both relevance and diversification. As features, we used a modified version of the RMAC (Regional Maximum Activation of Convolutions) descriptor for visua...

متن کامل

Design and optimisation of a (FA)Q-learning-based HTTP adaptive streaming client

Maxim Claeys⇤a, Steven Latréb, Jeroen Famaeya, Tingyao Wuc, Werner Van Leekwijckc and Filip De Turcka aDepartment of Information Technology, Ghent University iMinds, Gaston Crommenlaan 8/201, B-9050 Gent, Belgium bDepartment of Mathematics and Computer Science, University of Antwerp iMinds, Middelheimlaan 1, B-2020 Antwerpen, Belgium cAlcatel Lucent Bell Labs, Copernicuslaan 50, B-2018 Antwerpe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014